Low Pressure Plasma Technology
Outline

- About Europlasma
- What is Plasma?
- Plasma Processes + Case Studies
- Applications
- Plasma Equipment
- In-line Plasma Equipment
- Conclusions
About Europlasma
Mission Statement

- Europlasma designs, builds and sells turnkey vacuum plasma treatment equipment
- Europlasma develops and optimizes the plasma processes required to solve the material problems of its customers
- Europlasma helps its customers to produce better and/or cheaper products in an environment friendly way
Company History

- Founded in 1989 by Anthony Vanlandeghem
- Own engineering and construction under the Europlasma brand name since 1993
- Team of 20 specialized people
- World-wide marketing and after sales service
- More than 350 industrial systems running world-wide
- Reference list of blue chip companies
- ISO9001:2000
Company History

Up-scaling

Process complexity
Markets

- Activation and coating of plastic parts
- Activation and coating of industrial textiles, non-wovens or film
- Cleaning and etching of electronic parts
Positioning

- Leading supplier of vacuum plasma treatment equipment for plastic parts
- Custom designed equipment for high end electronic applications
- Unique line of reel-to-reel vacuum plasma systems
What is a plasma?

- ‘Fourth state of matter’
- A plasma is a mix of
 - Charged particles (ions, electrons)
 - Neutrals (atoms, radicals, molecules)
What is a plasma?

- Plasma is generated by an electromagnetical discharge in a gas at low pressure
Plasma processes for plastics
Plasma processes

- Removal of molecular contamination layers from a surface
- Etching of a surface (several nm up to 1 µm)
- Chemical activation of a surface
- Cross linking of chemical species on the surface
- Plasma polymerization on a surface
- Substrates can be plastics, metals or ceramics
Activation

- Surface modification of outer molecular layers
- Treatment depth limited to typically 0.3 – 1.5 nm!
- Process gas mixtures typically based upon O_2, N_2 or Ar
Activation of plastics

- High surface energy = low water contact angle = good wetting = good adhesion
Activation of polypropylene

Polypropylene BEFORE plasma treatment

Polypropylene AFTER O_2-plasma treatment: carbonyl-groups have been added
<table>
<thead>
<tr>
<th></th>
<th>Surface Energy</th>
<th>Water Contact Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynes/cm</td>
<td>before</td>
</tr>
<tr>
<td>1. Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypropylene</td>
<td>29</td>
<td>72</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>31</td>
<td>72</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>38</td>
<td>72</td>
</tr>
<tr>
<td>ABS</td>
<td>35</td>
<td>72</td>
</tr>
<tr>
<td>Polyester</td>
<td>41</td>
<td>72</td>
</tr>
<tr>
<td>Rigid PVC</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>2. Fluorcarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytetrafluorethylene</td>
<td>37</td>
<td>72</td>
</tr>
<tr>
<td>polyethylene copolymer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorinated ethylene</td>
<td>22</td>
<td>72</td>
</tr>
<tr>
<td>propylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyvinylidene</td>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>3. Elastomers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>4. Thermoplastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet</td>
<td>41</td>
<td>72</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>46</td>
<td>72</td>
</tr>
<tr>
<td>Polyamide</td>
<td>40</td>
<td>72</td>
</tr>
</tbody>
</table>
Activation applicable for:

- Painting
- Printing
- Gluing
- Flocking
- Electroplating
- Metallisation
Activation of plastic parts prior to painting

untreated

plasma treated
CASE STUDY 1 PAINTING

- Material: Schuladur® A GF30 Black (PBT)
- Primer: Eques 31848
- Topcoat: Eques 42102
CASE STUDY 1 PAINTING

For plasma treated parts: primer and/or paint applied 2 weeks after plasma treatment.

<table>
<thead>
<tr>
<th></th>
<th>No Primer/No plasma</th>
<th>Primer</th>
<th>Plasma + Primer</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GT=2</td>
<td>GT=0</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>2</td>
<td>GT=2</td>
<td>GT=0</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>3</td>
<td>GT=1</td>
<td>GT=0</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>4</td>
<td>GT=2</td>
<td>GT=0</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>5</td>
<td>GT=1</td>
<td>GT=0</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
</tbody>
</table>

PRIMER CAN BE ELIMINATED
CASE STUDY 1 PAINTING

- CD1000 PLC - kHz
- 504 parts/batch
- Proces gas: O₂
- Cycle time: 15 min

- Processing cost: 0,00037 EUR/part
- Material: Ureumformaldehyde (UF)
- Primer: Peter Lacke P 649048
- Topcoat: Peter Lacke P 68313
CASE STUDY 2 PAINTING

- **Plasma + primer and painting after 2 days:** GT=0
- **Plasma + primer and painting after 2 weeks:** GT=0

<table>
<thead>
<tr>
<th></th>
<th>Primer + painting</th>
<th>Plasma + primer and painting after 2 days</th>
<th>Plasma + primer and painting after 2 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GT=5</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>2</td>
<td>GT=5</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>3</td>
<td>GT=5</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>4</td>
<td>GT=5</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
<tr>
<td>5</td>
<td>GT=5</td>
<td>GT=0</td>
<td>GT=0</td>
</tr>
</tbody>
</table>

ONLY ADHESION WHEN PLASMA IS USED

General Presentation 2008

Marc Pauwels
CASE STUDY 2 PAINTING

- CD1000 PLC - kHz
- 240 parts/batch
- Proces gas: O₂
- Cycle time: 15 min

- Processing cost: 0,00084 EUR/part
CASE STUDY 3 PAINTING

- Exterior part from AUDI Q7
- Material: Daplen KB 4436 PP EPDM M30
- Primer
- Topcoat
Plasma treated parts were painted after 1 week, 2 weeks, 4 weeks and 8 weeks.

Plasma treatment still effective after powerwash.

<table>
<thead>
<tr>
<th></th>
<th>Primer</th>
<th>Plasma</th>
<th>Cooking test</th>
<th>Condens test</th>
<th>Gloss</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GT=0</td>
<td>GT=0</td>
<td>OK</td>
<td>OK</td>
<td>12,1</td>
<td>1,06</td>
</tr>
<tr>
<td>2</td>
<td>GT=0</td>
<td>GT=0</td>
<td>OK</td>
<td>OK</td>
<td>11,9</td>
<td>1,05</td>
</tr>
<tr>
<td>3</td>
<td>GT=4</td>
<td>GT=0</td>
<td>OK</td>
<td>OK</td>
<td>12</td>
<td>1,06</td>
</tr>
<tr>
<td>4</td>
<td>GT=0</td>
<td>GT=0</td>
<td>OK</td>
<td>OK</td>
<td>11,8</td>
<td>1,02</td>
</tr>
</tbody>
</table>

PRIMER CAN BE ELIMINATED

PLASMA GIVES BEST QUALITY GUARANTEE
EUROPLASMA NV

CASE STUDY 3 PAINTING

- CD2000 PLC - kHz
- Proces gas: O₂
- Cycle time: 10 min
- Processing cost: 0,20 EUR/batch
Activation of plastic parts prior to gluing
Plasma as Pre-Treatment Prior to Gluing: Case 1 - Polymers

<table>
<thead>
<tr>
<th>TLSS-data</th>
<th>PE Untreated</th>
<th>PE Plasma treated</th>
<th>PP Untreated</th>
<th>PP Plasma treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MPa) ECCOBOND® 2332</td>
<td>0.63</td>
<td>> 2.61</td>
<td>0.14</td>
<td>1.78</td>
</tr>
<tr>
<td>(MPa) ECCOBOND® 45 W 1</td>
<td>0.59</td>
<td>> 2.66</td>
<td>0.12</td>
<td>1.82</td>
</tr>
<tr>
<td>Surface Energy (mN/m)</td>
<td>30</td>
<td>> 68</td>
<td>33</td>
<td>> 68</td>
</tr>
</tbody>
</table>

TLSS = Tensile Lap Shear Strength

Epoxy adhesives

Products supplied by: Emerson & Cuming

General Presentation 2008

Marc Pauwels

(ECCOBOND® is a registered trademark of National Starch & Chemical)
EUROPLASMA NV

PLASMA AS PRE-TREATMENT PRIOR TO GLUING: CASE 1 - POLYMERS

<table>
<thead>
<tr>
<th>TLSS-data</th>
<th>ABS Untreated</th>
<th>ABS Plasma treated</th>
<th>PBT, 30 %GF Untreated</th>
<th>PBT, 30 %GF Plasma treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECCOBOND® 2332</td>
<td>-</td>
<td>-</td>
<td>7.02</td>
<td>12.62</td>
</tr>
<tr>
<td>ECCOBOND® 45 W 1</td>
<td>1.60</td>
<td>> 4.92</td>
<td>2.34</td>
<td>7.92</td>
</tr>
<tr>
<td>Surface Energy (mN/m)</td>
<td>35</td>
<td>> 68</td>
<td>35</td>
<td>> 68</td>
</tr>
</tbody>
</table>

TLSS = Tensile Lap Shear Strength

Epoxy adhesives

Products supplied by: Emerson & Cuming
PLASMA AS PRE-TREATMENT PRIOR TO GLUING: CASE 2 - METALS, Al

<table>
<thead>
<tr>
<th>TLSS (MPa)</th>
<th>Untreated</th>
<th>Plasma treated (physical cleaning, Ar/O₂)</th>
<th>Plasma treated (chemical cleaning, O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECCOBOND® 2332</td>
<td>13.90</td>
<td>18.18</td>
<td>20.10</td>
</tr>
<tr>
<td>Surface Energy (mN/m)</td>
<td>35</td>
<td>> 68</td>
<td>> 68</td>
</tr>
</tbody>
</table>

TLSS = Tensile Lap Shear Strength

Epoxy adhesive

Products supplied by:

![Emerson & Cuming](https://example.com/emerson_cuming_logo.png)
Gluing of plasma activated PPS

- Smooth surface - no pre-treatment
- Plasma surface activation - 1
- Plasma surface activation - 2
- Physical surface roughening

Max break force, N
CASE STUDY 1 GLUING

- Interior part from RENAULT Laguna
- Material: PP + 20% talc (Borealis)
- Waterbased glue
- Flock
CASE STUDY 1 GLUING

- Without plasma → no adhesion of the glue on the PP
- Typical layer thickness glue: +/- 95µm
Activation of plastic parts prior to gluing/flocking
Electro pneumatic

- 3-D parts
- Flock flow adjustable
- Air flow adjustable
- High Voltage adjustable
Polymerization

- Reaction takes place on the substrate surface
- Permanent coatings with typical thickness of tens of nm
- Functionality determined by precursor gas(es):
 - Hydrocarbons (+ O₂): permanently hydrophilic coatings
 - Fluorocarbon mixtures: permanently hydrophobic and oleophobic coatings
Applicable for:

- Non-woven media for filtration
- Medical devices
- PCB
Oleophobic/Hydrophobic treatment filter media

Water absorption in % (soaking 22 hours + vertical dripping for X time)

- As received
- Plasma coated

<table>
<thead>
<tr>
<th>Weight increase in %</th>
<th>1: after 1 min; 2: after 1 h; 3: after 24 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Etching

- Surface modification of outer molecular layers
- To remove parts of the material
- To remove a whole layer
- To obtain better adhesion
- To obtain roughening of the surface
- To avoid contamination
Etching
Etching

Figure 2-1: (a) visualization of the etching rate, (b) working principle of chemical etching, physical etching and combination of both
Plasma etching of POM and PTFE:
Applicable for:

- Medical devices
- Automotive windows
- PCB’s
- …
Applications
Automotive:

- Arm rest in car door
- Dashboard
- Gloveboxes
- Bumpers
- Windows
- Airfilters
- ...
Electronics:

- Multi layer boards (6-64 inner layers)
- Boards with high aspect ratio (via) holes
- PCB’s with micro-vias, buried vias, blind vias and laser formed vias
- PCB’s from Teflon-based materials
- Finished PCB (with components) before surface coating with protective resin (hybrids)
- Polyimide-based materials for multilayer flex and rigid-flex boards
Medical devices:

- Balloon catheters: activation of balloon before gluing to the stem
- Other catheters: activation before printing on the catheter hub or before gluing the metal part with the connector (PC)
- Syringes and dental needles: activation of needle hubs (PP) prior to gluing the needle
- Microtitre plates: activation for improved wetting and improved cell growth
- Stents:
 - Fine cleaning
 - Stents with membrane: activation for improved bonding quality
- Guide wire: fine cleaning of metal wire prior to hydrogel coating or Teflon® deposition
- Activation of medical parts in general prior to parylene coatings
Plasma treatment equipment
EUROPLASMA NV

Junior

General Presentation 2008
Marc Pauwels
EUROPLASMA NV

CD400PLC

General Presentation 2008 Marc Pauwels
EUROPLASMA NV

CD1000PLC
EUROPLASMA NV

CD1800

General Presentation 2008 Marc Pauwels
Custom Design
EUROPLASMA NV

General Presentation 2008

Marc Pauwels
Roll-to-roll plasma treatment system for nonwovens

EUROPLASMA NV

Vacuum chamber Electrode system
Pump system
RF-Generator Winding system
Proces control system
In-line plasma equipment
EUROPLASMA NV

Cycle: 6 bumpers in 6 minutes

Custom Design
EUROPLASMA NV

General Presentation 2008

Marc Pauwels
In-line 2D treatment system
In-line 2D treatment system
In-line 2D treatment system
Conclusions
Advantages of vacuum plasma

- Effective treatment!
 - High surface energy levels
 - Good shelf life
- Uniform treatment of three dimensional parts
- Simple process control
- Low defect density
Advantages of vacuum plasma

- Low variable costs
- Dry and clean process
- Clean room compatible equipment
- Batch process easily integrated in production line